Roll No. Total Pages: 04

BT-I/D-21 41001

MATHEMATICS MATH-101-E

Time: Three Hours [Maximum Marks: 100

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

Unit I

- 1. (a) Find the radius of curvature at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ of the Folium $x^3 + y^3 = 3axy$.
 - (b) Find the asymptotes of the curve $x^2y xy^2 + xy + y^2 + x y = 0$ and show that the cut the curve again in three points which lie on the line x + y = 0.
- **2.** (a) Prove that (by using series):

$$\frac{x}{2} \left(\frac{e^x + 1}{e^x - 1} \right) = 1 + \frac{1}{6} \cdot \frac{x^2}{\angle 2} - \frac{1}{30} \cdot \frac{x^4}{\angle 4} + \dots,$$

where \angle denotes the factorial notation.

1

(2)L-41001

(b) Trace the curve:

$$y^2(2a-x) = x^3$$

Unit II

3. (a) If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, show that :

$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$$

(b) If $\sin u = \frac{x^2 y^2}{x + y}$, prove that :

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 3\tan u$$

- **4.** (a) If $u = x + 3y^2 z^3$, $v = 4x^2yz$, $w = 2z^2 xy$, evaluate $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at (1, -1, 0).
 - (b) Show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube.

Unit III

- 5. (a) Change the order of integration in $I = \int_0^1 \int_{x^2}^{2-x} xy \, dx \, dy \text{ and hence evaluate the same.}$
- (2)L-41001

(b) Evaluate:

$$\int_0^1 \int_{y^2}^1 \int_0^{1-x} x \, dz \, dx \, dy$$

6. (a) Prove that:

$$\beta(m,n) = \frac{\sqrt{m} \sqrt{n}}{\sqrt{m+n}}$$

(b) Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$ by changing to polar coordiantes. Hence show that :

$$\int_0^\infty e^{-x^2} = \sqrt{\frac{\pi}{2}}$$

Unit IV

- If $A = 5t^2I + tJ t^3K$, $B = \sin tI \cos tJ$, find: (a)

 - (i) $\frac{d}{dt}(\mathbf{A}.\mathbf{B})$ (ii) $\frac{d}{dt}(\mathbf{A} \times \mathbf{B})$
 - Find the directional derivative (b) of $f(x, y, z) = xy^3 + yz^3$ at the point (2, -1, 1) in the direction of vector I + 2J + 2K.
- Show that: 8. (a)

$$\nabla^2 \left(r^n \right) = n \left(n+1 \right) r^{n-2}$$

(2)L-41001

(b) Apply Green's theorem to evaluate :

$$\int_{C} \left[\left(2x^2 - y^2 \right) dx + \left(x^2 + y^2 \right) dy \right],$$

where C is the boundary of the area enclosed by the x-axis and the upper-half of the circle $x^2 + y^2 = a^2$.